Clique-inverse graphs of bipartite graphs\footnote{This work was partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ, Brazil.}

Fábio Protti\footnote{Núcleo de Computação Eletrônica, Universidade Federal do Rio de Janeiro.}
Jayme L. Szwarcfiter\footnote{Núcleo de Computação Eletrônica, Instituto de Matemática, and COPPE-Sistemas, Universidade Federal do Rio de Janeiro.}

Universidade Federal do Rio de Janeiro
Caixa Postal 2324, 20001-970, Rio de Janeiro, Brazil
{fabiop,jayme}@nce.ufrj.br

Abstract

The clique graph $K(G)$ of a given graph G is the intersection graph of the collection of maximal cliques of G. Given a family \mathcal{F} of graphs, the clique-inverse graphs of \mathcal{F} are the graphs whose clique graphs belong to \mathcal{F}. In this work, we describe characterizations for clique-inverse graphs of bipartite graphs, chordal bipartite graphs, and trees. The characterizations lead to polynomial time algorithms for the corresponding recognition problems.

Keywords: intersection graphs, clique graphs, clique-inverse graphs

1 Introduction

Let G be a finite undirected graph with no loops nor multiple edges. Denote the vertex set of G by $V(G)$, and the edge set by $E(G)$. A subgraph H of G is a graph where $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. For a set X of vertices of G, denote by $G[X]$ the subgraph of G
induced by X, that is, the vertex set of $G[X]$ is X and two vertices are adjacent in it if they are so in G.

A clique is a subset of vertices inducing a complete subgraph of G, while a maximal clique is one not properly contained in any other. The clique number $\omega(G)$ of G is the largest order of a clique in G.

A chord c is an edge linking two non-consecutive vertices in a cycle. Denote by C_k a cycle with k vertices. A graph is chordal if it contains no induced subgraph isomorphic to C_k for $k \geq 4$.

A graph is bipartite if its vertex set can be partitioned into two sets U and W such that every edge in $E(G)$ links a vertex of U to a vertex of W. A graph is chordal bipartite if it is bipartite and contains no induced subgraph isomorphic to C_{2k} for $k \geq 3$.

The clique graph $K(G)$ of G is the intersection graph of the collection of maximal cliques of G. If $H = K(G)$, we say that G is a clique-inverse graph of H. Given a family \mathcal{F} of graphs, the family of clique-inverse graphs of \mathcal{F} is defined as

$$K^{-1}(\mathcal{F}) = \{G|K(G) \in \mathcal{F}\}.$$

In [6], Hedetniemi and Slater presented characterizations for clique graphs of triangle-free graphs, bipartite graphs, and trees:

Theorem 1 [6] Let G be a graph. Then $G \in K(\mathcal{F})$ if and only if $K(G) \in \mathcal{F}$ and any two distinct maximal cliques of G have at most one vertex in common, where \mathcal{F} is one of the following families: triangle-free graphs, bipartite graphs, or trees. \blacksquare

Let \mathcal{I}_k be the family of graphs with the following property: any two distinct maximal cliques of a graph in \mathcal{I}_k have at most k vertices in common. Then Hedetniemi and Slater's result can be rewritten as

$$K(\mathcal{F}) = K^{-1}(\mathcal{F}) \cap \mathcal{I}_1,$$

where \mathcal{F} is one of the families cited in the above theorem. Although the problem of characterizing clique graphs of certain families has been studied for several cases, e.g. [1, 2, 5, 6, 7, 11, 15], much less is known about the corresponding inverse problem, which can be stated as follows: given a family \mathcal{F} of graphs, characterize $K^{-1}(\mathcal{F})$, called
the family of clique-inverse graphs of \mathcal{F}. In this work, characterizations are described for clique-inverse graphs of bipartite graphs, chordal bipartite graphs, and trees. The characterizations lead to polynomial time algorithms for solving the corresponding recognition problems.

Clique-inverse graphs were the subjects of [9] and [12]. They are also called roots (relative to the clique operator), see e.g. [10]. Clique-inverse graphs of complete graphs are called clique-complete. A characterization of the minimal clique-complete graphs with no universal vertex (a vertex adjacent to all other vertices of the graph) has been formulated in [9]. It corresponds to a description of the minimal clique-complete graphs whose maximal cliques do not satisfy the Helly property. In [13], characterizations for clique-inverse graphs of triangle-free graphs and K_4-free graphs are presented in terms of forbidden subgraphs.

The following result is a characterization for clique-inverse graphs of triangle-free graphs. It will be used later:

Theorem 2 [13] G is a clique-inverse graph of a triangle-free graph if and only if G does not contain as an induced subgraph any of the following graphs: $K_{1,3}$, 4-fan, 4-wheel (see Figure 1).

![Forbidden subgraphs](image)

Figure 1: Forbidden subgraphs for clique-inverse graphs of triangle-free graphs.

2 The characterizations

In this section we give complete characterizations for the situations in which $K(G)$ is bipartite, chordal bipartite, or a tree. We begin by
analyzing the case in which $K(G)$ is bipartite. The characterization
will be formulated in terms of a list of forbidden subgraphs.

Any bipartite graph is triangle-free. Thus, $K^{-1}(BIPARTITE)$ is
contained in $K^{-1}(\text{TRIANGLE} - \text{FREE})$.

Theorem 3 A graph G is a clique-inverse graph of a bipartite graph
if and only if G does not contain as an induced subgraph any of the
following: $K_{1,3}$, 4-fan, 4-wheel, and C_{2k+5} (for all $k \geq 0$).

Proof. (\Rightarrow): Assume by contradiction that G is a clique-inverse
graph of a bipartite graph and G contains $S = C_{2k+5}$ as an induced
subgraph. Write $S = u_0u_1 \ldots u_pu_0$, where $p = 2k+4$, $k \geq 0$. Clearly,
there exists a collection $\mathcal{M} = \{M_0, M_1, \ldots, M_p\}$ of maximal cliques
of G such that each edge $e_i = \{u_i, u_{i+1}\}$ of S lies in exactly one of
the cliques in \mathcal{M}, say e_i lies in M_i (indices are taken circularly in the
range $0 \ldots p$). Note that $u_{i+1} \in M_i \cap M_{i+1}$, that is, M_i and M_{i+1}
intersect. Thus, $M_0M_1 \ldots M_pM_0$ is an odd cycle in $K(G)$. This is a
contradiction, since $K(G)$ is bipartite. On the other hand, by Theo-
rem 2, if G contains either a 4-wheel, a 4-fan, or $K_{1,3}$ as an induced
subgraph, then $K(G)$ contains a triangle, another contradiction.

(\Leftarrow): Assume by contradiction that G does not contain any of the
graphs listed in the statement of the theorem as an induced subgraph,
and that G is not a clique-inverse graph of a bipartite graph. Then,
there exists a chordless odd cycle $C = M_0M_1 \ldots M_{2p}M_0$ in $K(G)$,
where $p \geq 1$ and each M_i is a distinct maximal clique of G. Choose
C for which p is minimum. There are two possible cases:

Case 1: $p = 1$. Then, $K(G)$ contains a triangle. This implies, by
Theorem 2, that G contains either a 4-wheel, a 4-fan, or $K_{1,3}$ as an
induced subgraph, a contradiction.

Case 2: $p > 1$. This situation is depicted in Figure 2 (for $p = 2$).
Let $u_i \in M_i \cap M_{i+1}$, where indices are taken circularly in the range
$0 \ldots 2p$. Note that each u_i belongs to no maximal cliques of G other
than M_i and M_{i+1}. Otherwise, if u_i also belongs to a maximal clique
M distinct from M_i and M_{i+1}, then $K(G)$ contains a triangle, a
contradiction - since the cycle $C = M_0M_1 \ldots M_{2p}M_0$ in $K(G)$ has been
taken for $p > 1$ minimum. Thus, the cycle $C_G = u_0u_2 \ldots u_{2p}u_0$ in
G is chordless, since the existence of a chord linking non-consecutive
vertices u_k and u_j in C_G would imply the existence of a new maximal
clique M containing u_k and u_j, distinct from the cliques in the
multiset \(\{M_k, M_{k+1}, M_j, M_{j+1}\} \). Thus, \(C_G \) is a chordless odd cycle with \(2p + 1 \geq 5 \) vertices, which contradicts the assumption that \(G \) does not contain \(C_{2k+5}, k \geq 0 \), as an induced subgraph. □

![Diagram](image)

Figure 2: Case 2 of Theorem 3, for \(p = 2 \).

In order to characterize clique-inverse graphs of chordal bipartite graphs, we employ an additional definition. Let \(C = v_0v_1\ldots v_kv_0 \) \((k \geq 3)\) be a cycle in a graph \(G \). We say that \(C \) admits an even division if there exists a vertex \(w \in G \setminus C \) which is adjacent to four distinct vertices \(v_i, v_{i+1}, v_j, v_{j+1} \) of \(C \) such that \(j - (i + 1) \) is even, that is, the path \(v_{i+1}v_{i+2}\ldots v_j \) has an even number of edges. The indices are taken circularly in the range \(0 \ldots k \). See Figure 3.

In the cycle \(v_1v_2v_3v_4v_5v_6v_1 \) admits an even division.
The next theorem characterizes $K^{-1}(\text{CHORDAL BIPARTITE})$ in terms of $K^{-1}(\text{BIPARTITE})$:

Theorem 4 A graph G is a clique-inverse graph of a chordal bipartite graph if and only if $G \in K^{-1}(\text{BIPARTITE})$ and every chordless even cycle of G with at least six vertices admits an even division.

Proof. (\Rightarrow): Assume that G is a clique-inverse graph of a chordal bipartite graph, that is, $K(G)$ is chordal bipartite. Clearly, $G \in K^{-1}(\text{BIPARTITE})$. Now, let $C = v_0v_1 \ldots v_{2k-1}v_0$ be a chordless even cycle of G with $k \geq 3$. Let M_i be a maximal clique of G containing the edge $\{v_i, v_{i+1}\}$, where indices are taken circularly in the range $1 \ldots 2k-1$. It is clear that $M_0M_1 \ldots M_{2k-1}M_0$ is a cycle in $K(G)$, since $v_i \in M_{i-1} \cap M_i$. Assume by contradiction that C does not admit an even division. Then $M_i \cap M_j = \emptyset$ for non-consecutive indices i and j such that $j - (i+1)$ is even. Observe that $M_i \cap M_j = \emptyset$ also holds for non-consecutive i and j such that $j - (i+1)$ is odd, since otherwise $K(G)$ would contain an odd cycle, contradicting $K(G)$ to be bipartite. It follows that $M_0M_1 \ldots M_{2k-1}M_0$ is chordless, $k \geq 3$. This contradicts the fact that $K(G)$ is chordal bipartite.

(\Leftarrow): Assume that $G \in K^{-1}(\text{BIPARTITE})$ and every chordless even cycle of G with at least six vertices admits an even division. Then, $K(G)$ is bipartite. Now, let us show that $K(G)$ does not contain an induced subgraph isomorphic to C_{2k}, for $k \geq 3$. Assume by contradiction that $C = M_0M_1 \ldots M_{2k-1}M_0$ is a chordless cycle in $K(G)$ for $k \geq 3$. Then, there exists a cycle $C_G = v_0v_1 \ldots v_{2k-1}v_0$ in G such that the edge $\{v_i, v_{i+1}\}$ lies in the maximal clique M_i, $0 \leq i \leq 2k-1$, where i is taken circularly in the range $0 \ldots 2k-1$. By the assumption, C_G admits an even division. Therefore, let $w \in G \setminus C$ adjacent to four distinct vertices $v_i, v_{i+1}, v_j, v_{j+1}$ of C such that $j - (i+1)$ is even. Observe that v_i belongs to no maximal cliques other than M_{i-1} and M_i, for otherwise $K(G)$ would contain a triangle. Since $w, v_i,$ and v_{i+1} belong to a same maximal clique, it follows that w belongs to at least one of the cliques M_{i-1} and M_i. Analogously, w belongs to at least one of the cliques M_{j-1} and M_j. Thus, some clique of the set $\{M_{i-1}, M_i\}$ intersects at least one clique of the set $\{M_{j-1}, M_j\}$. Since $j - (i + 1) > 0$, it follows that there exist two intersecting maximal cliques with non-consecutive indices in the cycle.
\(C = M_0 M_1 \ldots M_{2k-1} M_0 \). This is a contradiction, since \(C \) has been assumed to be chordless.

To conclude this section, let us examine the family \(K^{-1}(TREE) \). The following definition will be employed: a **domino** is a graph where every vertex belongs to at most two distinct maximal cliques \([8]\).

Theorem 5 A graph \(G \) is a clique-inverse graph of a tree if and only if \(G \) is a chordal domino.

Proof. (\(\Rightarrow \)): Assume by contradiction that \(G \) is a clique-inverse graph of a tree and \(G \) is not chordal, and let \(v_0 v_1 \ldots v_k v_0 \) be a chordless cycle in \(G \) with \(k \geq 3 \). Then there exist \(k \) distinct maximal cliques \(M_0, M_1, \ldots, M_k \) in \(G \) such that the edge \(\{v_i, v_{i+1}\} \) lies in \(M_i \) and \(M_i \) intersects \(M_{i+1} \), where the indices are taken circularly in the range \(0 \ldots k \). This implies that \(M_0 M_1 \ldots M_k M_0 \) is a cycle in \(K(G) \). But this is a contradiction, since \(K(G) \) is assumed to be a tree.

(\(\Leftarrow \)): Assume by contradiction that \(G \) is a chordal domino and \(K(G) \) is not a tree. Let \(M_0 M_1 \ldots M_k M_0, k \geq 2 \), be a cycle in \(K(G) \). There are two possible cases.

Case 1: \(k = 2 \).

Let \(R = M_0 \cap M_1 \cap M_2 \). It is clear that \(R = \emptyset \), since every vertex of \(G \) belongs to at most two maximal cliques. Let \(v_{01} \in M_0 \cap M_1 \), \(v_{02} \in M_0 \cap M_2 \), and \(v_{12} \in M_1 \cap M_2 \). Observe that \(v_{01}, v_{02}, \) and \(v_{12} \) induce a triangle in \(G \). Therefore, there exists a maximal clique \(M \) in \(G \) containing \(v_{01}, v_{02}, \) and \(v_{12} \). Clearly, \(M \neq M_0 \), since \(v_{12} \in M \) and \(v_{12} \notin M_0 \). Analogously, \(M \neq M_1 \). This implies that \(v_{01} \) belongs to \(M_0, M_1 \), and \(M \), contradicting the fact that every vertex of \(G \) belongs to at most two maximal cliques.

Case 2: \(k > 2 \).

Let \(v_i \in M_i \cap M_{i+1} \), where \(0 \leq i \leq k \) and indices taken circularly in the range \(0 \ldots k \). Then, \(C = v_0 v_1 \ldots v_k v_0 \) is a cycle in \(G \). The \(v_i \)’s are distinct, for otherwise, if \(v_i = v_j \) for \(i \neq j \), then \(v_i \) would belong to
all the cliques in the multiset \(\{M_i, M_{i+1}, M_j, M_{j+1}\} \), which contains at least three distinct elements. Since \(G \) is chordal, \(C \) has a chord joining \(v_r \) and \(v_{r+2 \mod k} \), for some \(r \) in the range \(0 \ldots k \). Thus, \(v_r \), \(v_{r+1} \), and \(v_{r+2} \) induce a triangle in \(G \). This implies that there exists a maximal clique \(M \) in \(G \) containing these three vertices. Clearly, \(M \neq M_r \), since \(v_{r+1} \in M \) and \(v_{r+1} \notin M_r \). Analogously, \(M \neq M_{r+1} \). Thus, \(v_r \) belongs to \(M_r \), \(M_{r+1} \), and \(M \). This contradicts the fact that every vertex of \(G \) belongs to at most two distinct maximal cliques.

\(\square \)

Corollary 6 Let \(G \) be a graph. Then, \(G \) is a clique-inverse graph of a tree if and only if \(G \) does not contain as an induced subgraph any of the following graphs: \(K_{1,3} \), 4-fan, 4-wheel, \(C_k \) (for all \(k \geq 4 \)).

Proof. If \(G \in K^{-1}(\text{TREE}) \), then \(G \) is a clique-inverse graph of a triangle-free graph. Therefore, by Theorem 2, \(G \) does not contain as an induced subgraph any of the following graphs: \(K_{1,3} \), 4-fan, 4-wheel. Moreover, by Theorem 5, \(G \) is chordal, and thus the first part follows. Conversely, if \(G \) does not contain \(K_{1,3} \), 4-fan, 4-wheel, or \(C_k \) (\(k \geq 4 \)) as an induced subgraph, then \(G \) is chordal. Moreover, by Theorem 2, \(K(G) \) contains no triangle, which implies that each vertex of \(G \) can belong to at most two distinct maximal cliques, that is, \(G \) is a domino. Thus, by Theorem 5, \(G \) is a clique-inverse graph of a tree. \(\square \)

3 Algorithms

We start this section by observing that if \(K(G) \) has bounded clique number, then \(|V(K(G))| \) is \(O(n) \), that is, the number of maximal cliques of \(G \) is linearly bounded.

Lemma 7 [14] Let \(G \) be a connected graph. If \(\omega(K(G)) \leq r \) for a positive constant \(r \), then \(|V(K(G))| \leq rn \).

Proof. Observe that any vertex \(v \) of \(G \) may belong to at most \(r \) maximal cliques, since otherwise the cliques of \(G \) containing \(v \) would correspond to a clique of size at least \(r+1 \) in \(K(G) \), a contradiction.
Therefore, the number of maximal cliques of G is at most rn, that is, $|V(K(G))| \leq rn$.

A consequence of the above lemma is the fact that clique-inverse graphs of bipartite graphs have few maximal cliques.

Corollary 8 Let G be a connected graph. If $K(G)$ is bipartite then G contains at most $2n$ maximal cliques.

By using the above observations, we describe below polynomial-time recognition algorithms for the families focused in this work.

Let G be a graph. In order to decide whether or not $K(G)$ is bipartite, first check whether G contains at most $2n$ maximal cliques by applying the algorithm in [16] to \overline{G}, which generates all the maximal cliques of G with delay $O(nm)$, where $m = |E(G)|$. This task takes $O(n^2m)$ time. If G has more than $2n$ maximal cliques, then the answer to the question 'Is G in $K^{-1}(BIPARTITE)$?' is clearly 'no'. Otherwise, construct $K(G)$ by taking the maximal cliques generated by the algorithm. This task takes $O(nm)$ time, since G has at most $2n$ maximal cliques, and each intersection test between two cliques takes $O(m)$ time. Finally, verify whether $K(G)$ is bipartite in $O(m)$ time (recall that $|V(K(G))|$ is $O(n)$). Therefore, the entire procedure answers the question 'Is G in $K^{-1}(BIPARTITE)$?' in polynomial time.

In order to decide whether $K(G)$ is chordal bipartite, apply a similar algorithm. The graph $K(G)$ can be constructed in polynomial time. In addition, $K(G)$ can be recognized as a chordal bipartite graph also in polynomial time [4].

Finally, one may use the characterization of Theorem 5 to verify whether $K(G)$ is a tree. Checking chordality and recognizing whether G is a domino can be done in polynomial time.

References

